
The switch Package

Version 1.0

Alceu Frigeri*

May 2025

Abstract

This package offers two commands aimed at implementing a switch/case alike command.

Contents

1 Introduction 1

2 Commands 1
2.1 User Document ones . 1

2.1.1 Example . 2
2.2 Expl3 ones . 2

2.2.1 Example . 2

1 Introduction

There are many ways of implementing a switch case programming structure. Notably, one can use
\str_case:nn from expl3, or go over a loop using \pdfstrcmp, or construct an if-then-else tower,
etc.

This implements a solution, somewhat based on [1], which (besides being simple) has the
advantage of being constant time: once the cases are set up, suffice a single (internal) if (\ifcsname)
to select the correct code to be executed.

Note: The implementation creates a \csname for each case, and it uses (at the end)
the primitive \ifcsname to select the correct case.
Note: The coding is done using expl3, just for the sake of readability, in the package
comments one can find an implementation using just TEX primitives.

2 Commands

Two set of commands are created, one to be used in a expl3 code régime, and another set to be
used in a user document.

2.1 User Document ones

\newswitch ⟨switch⟩ {⟨default-code⟩}\newswitch

It will create a new switch ⟨switch⟩, which will expects a single argument. In case the argument
doesn’t corresponds to any defined case, ⟨default-code⟩ will be used. The resulting ⟨switch⟩ com-
mand is expandable, if ⟨default-code⟩ and ⟨case-code⟩ (added by \addcase) also are. This is just
an alias for \switch_new:Nn

Note: #1 can be used in ⟨default-code⟩.

\addcase ⟨switch⟩ {⟨case⟩} {⟨case-code⟩}\addcase

It will add a ⟨case⟩ to a previously defined ⟨switch⟩ and associates ⟨case-code⟩ with it. ⟨case⟩ will
be fully expanded at definition time. Once defined one can call \switch {case}, which will put
said ⟨case-code⟩ in the input stream. This is just an alias for \switch_addcase:Nnn.

*https://github.com/alceu-frigeri/switch

1

2.1.1 Example

First we create a switch, and associate a few (or more) cases. Note the possibility of using an
auxiliary (fully expandable) macro/command when defining the cases.

\def\CaseAstring{case-A}

\newswitch \myCase {I~ don't~ know:~ #1\par}

\addcase \myCase {\CaseAstring} {A~ was~ used\par}

\addcase \myCase {case-B} {B~ was~ used\par}

To use the ⟨switch⟩, one just has to call it with ⟨case⟩ as an argument. Note the possibility of
using an auxiliary macro/command (which has to be fully expandable) as a ⟨case⟩.

\def\somemacro{case-A}

\def\someothermacro{case-X}

If B, then \myCase{case-B}

If A, then \myCase{case-A}

If X, then \myCase{case-X}

if somemacro: \myCase{\somemacro}

if someothermacro: \myCase{\someothermacro}

If B, then B was used
If A, then A was used
If X, then I don’t know: case-X
if somemacro: A was used
if someothermacro: I don’t know: case-X

2.2 Expl3 ones

\switch_new:Nn ⟨switch⟩ {⟨default-code⟩}\switch_new:Nn

It will create a new switch ⟨switch⟩, which will expects a single, type n, argument. In case the argu-
ment doesn’t corresponds to any defined case, ⟨default-code⟩ will be used. The resulting ⟨switch⟩
command is expandable, if ⟨default-code⟩ and ⟨case-code⟩ (added by \switch_addcase:Nnn) also
are.

Note: #1 can be used in ⟨default-code⟩.

\switch_addcase:Nnn ⟨switch⟩ {⟨case⟩} {⟨case-code⟩}\switch_addcase:Nnn

It will add a ⟨case⟩ to a previously defined ⟨switch⟩ and associates ⟨case-code⟩ with it. ⟨case⟩ will
be fully expanded at definition time. Once defined one can call \switch {case}, which will put
said ⟨case-code⟩ in the input stream.

2.2.1 Example

First we create a switch, and associate a few (or more) cases. Note the possibility of using an
auxiliary (fully expandable) macro/command when defining the cases.

\ExplSyntaxOn

\def\CaseAstring{case-A}

\switch_new:Nn \TextCase {I~ don't~ know:~ #1\par}

\switch_addcase:Nnn \TextCase {\CaseAstring} {A~ was~ used\par}

\switch_addcase:Nnn \TextCase {case-B} {B~ was~ used\par}

\ExplSyntaxOff

To use the ⟨switch⟩, one just has to call it with ⟨case⟩ as an argument. Note the possibility of
using an auxiliary macro/command (which has to be fully expandable) as a ⟨case⟩.

\def\somemacro{case-A}

\def\someothermacro{case-X}

If B, then \TextCase{case-B}

If A, then \TextCase{case-A}

If X, then \TextCase{case-X}

if somemacro: \TextCase{\somemacro}

if someothermacro: \TextCase{\someothermacro}

If B, then B was used
If A, then A was used
If X, then I don’t know: case-X
if somemacro: A was used
if someothermacro: I don’t know: case-X

2

References

[1] Paul Gaborit. Stack Exchange answer about Implementing Switch Cases. 2012. url: https://
tex.stackexchange.com/questions/64131/implementing-switch-cases/343306#343306

(visited on 12/10/2016).

3

https://tex.stackexchange.com/questions/64131/implementing-switch-cases/343306#343306
https://tex.stackexchange.com/questions/64131/implementing-switch-cases/343306#343306

	Introduction
	Commands
	User Document ones
	Example

	Expl3 ones
	Example

